Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

Test the series for convergence.

k=112k+3\sum_{k=1}^{\infty} \frac{1}{\sqrt{2 k+3}}

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 12

Integral Test: Let an=f(n)a_n = f (n), where f is a positive, decreasing, and continuous function of xx for x1x \geq 1

(i) If 1f(x)dx\displaystyle \int ^{ \infty}_{1} f(x) dx converges then n=1an\sum\limits_{n=1}^{\infty} a_n converges

(ii) If 1f(x)dx\displaystyle \int ^{ \infty}_{1} f(x) dx diverges then n=1an\sum\limits_{n=1}^{\infty} a_n diverges

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (3 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,144 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (3 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions
Calculus 6th Edition by Karl J. Smith, Magdalena D. Toda, Monty J. Strauss

Calculus

6th EditionISBN: 9781465208880 (1 more)Karl J. Smith, Magdalena D. Toda, Monty J. Strauss
5,412 solutions

More related questions

1/4

1/7