## Related questions with answers

Question

Test the series given for convergence.

$\sum_{k=1}^{\infty} \frac{\ln k}{k^{2}}$

Solution

VerifiedAnswered 2 years ago

Answered 2 years ago

Step 1

1 of 12Integral Test: Let $a_n = f (n)$, where f is a positive, decreasing, and continuous function of $x$ for $x \geq 1$

(i) If $\displaystyle \int ^{ \infty}_{1} f(x) dx$ converges then $\sum\limits_{n=1}^{\infty} a_n$ converges

(ii) If $\displaystyle \int ^{ \infty}_{1} f(x) dx$ diverges then $\sum\limits_{n=1}^{\infty} a_n$ diverges

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (5 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,144 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (5 more)James Stewart11,085 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (2 more)Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions

#### Calculus

6th Edition•ISBN: 9781465208880 (1 more)Karl J. Smith, Magdalena D. Toda, Monty J. Strauss5,412 solutions

## More related questions

1/4

1/7