Try the fastest way to create flashcards
Question

# The atmospheric pressure p on an object decreases with increasing height. This pressure, measured in millimeters of mercury, is related to the height h (in kilometers) above sea level by the function $p(h)=760 e^{-0.145 h}$ Find the height of a mountain if the atmospheric pressure is 667 millimeters of mercury.

Solution

Verified
Step 1
1 of 2

Substitute $667$ to $p(h)$ to obtain:

\begin{align*} 667&=760e^{-0.145h}\\ \frac{667}{760}&=\frac{760e^{-0.145h}}{760}\\ \frac{667}{760}&=e^{-0.145h}\\ \end{align*}

Use the rule $e^a=b \implies a=\ln{b}$ to obtain:

\begin{align*} -0.145h&=\ln{\left(\frac{667}{760}\right)}\\ \frac{-0.145h}{-0.145}&=\dfrac{\ln{\left(\frac{667}{760}\right)}}{-0.145}\\ h&=\dfrac{\ln{\left(\frac{667}{760}\right)}}{-0.145} \end{align*}

Use a calculator to obtain:

\begin{align*} h&=0.9001957749\\ h&\approx 0.90\text{ km} \end{align*}

## Recommended textbook solutions #### Precalculus

2nd EditionISBN: 9780076602186Carter, Cuevas, Day, Malloy
8,886 solutions #### Precalculus Enhanced with Graphing Utilities

7th EditionISBN: 9780134119281 (2 more)Michael Sullivan
9,861 solutions #### Nelson Functions 11

1st EditionISBN: 9780176332037Chris Kirkpatrick, Marian Small
1,275 solutions #### Precalculus with Limits

3rd EditionISBN: 9781133962885 (3 more)Larson
11,068 solutions