Related questions with answers

Question

The energy E of a system of three independent harmonic oscillators is given by E=(nx+12)ω+(ny+12)ω+(nz+12)ωE=\left(n_{x}+\frac{1}{2}\right) \hbar \omega+\left(n_{y}+\frac{1}{2}\right) \hbar \omega+\left(n_{z}+\frac{1}{2}\right) \hbar \omega. Show that the partition function Z is given by Z=ZSHO3Z=Z_{\mathrm{SHO}}^{3}, where ZSHO is the partition function of a simple harmonic oscillator given. Hence show that the Helmholtz function is given by F=32ω+3kBTln(1eβω)F=\frac{3}{2} \hbar \omega+3 k_{\mathrm{B}} T \ln \left(1-\mathrm{e}^{-\beta \hbar \omega}\right), and that the heat capacity tends to 3kB3 k_{\mathrm{B}} at high temperature.

Solution

Verified
Step 1
1 of 3

We have a system of three independent harmonic oscillators, the energy of the system is given by,

E=(nx+12)ω+(ny+12)ω+(nz+12)ω\begin{align} E=\left(n_{x}+\frac{1}{2}\right) \hbar \omega+\left(n_{y}+\frac{1}{2}\right) \hbar \omega+\left(n_{z}+\frac{1}{2}\right) \hbar \omega\end{align}

since the three SHOs are independent of each others, then the total partition function equals the multiplication of the partition functions of each one of the oscillators, that is,

Z=ZSHO3\boxed{Z=Z_{\mathrm{SHO}}^{3}}

where ZSHOZ_{\mathrm{SHO}} is the partition function of a simple harmonic oscillator, that is,

ZSHO=eβω/21eβω\begin{align}Z_{\mathrm{SHO}}=\frac{e^{- \beta \hbar \omega/2}}{1-e^{-\beta \hbar \omega}} \end{align}

the Helmholtz function is, therefore,

F=kBTln(Z)=kBTln(ZSHO3)=3kBTln(ZSHO)=3kBTln(eβω/21eβω)=3kBT[ln(eβω/2)ln(1eβω)]=32ω+3kBTln(1eβω)\begin{align*} F&=- k_{\mathrm{B}} T \ln\left(Z \right)\\ &=- k_{\mathrm{B}} T \ln\left(Z_{\mathrm{SHO}}^{3}\right)\\ &=- 3k_{\mathrm{B}} T \ln\left(Z_{\mathrm{SHO}}\right)\\ &=- 3k_{\mathrm{B}} T \ln\left(\frac{e^{- \beta \hbar \omega/2}}{1-e^{-\beta \hbar \omega}}\right)\\ &=- 3k_{\mathrm{B}} T \left[ \ln\left(e^{- \beta \hbar \omega/2} \right)-\ln\left(1-e^{-\beta \hbar \omega} \right) \right]\\ &=\frac{3}{2} \hbar \omega+3 k_{\mathrm{B}} T \ln \left(1-e^{-\beta \hbar \omega}\right) \end{align*}

F=32ω+3kBTln(1eβω)\boxed{F=\frac{3}{2} \hbar \omega+3 k_{\mathrm{B}} T \ln \left(1-e^{-\beta \hbar \omega}\right)}

the mean energy is,

U=dlnZdβ=3ddβ[ln(eβω/2)ln(1eβω)]=3ddβ[βω2ln(1eβω)]=3ω2+3ωeβω1eβω=3ω2+3ωeβω1\begin{align*}U&=-\frac{d \ln Z}{d \beta}\\ &=-3\frac{d}{d\beta}\left[\ln \left(e^{-\beta \hbar \omega / 2}\right)-\ln \left(1-e^{-\beta \hbar \omega}\right)\right]\\ &=-3\frac{d}{d\beta}\left[-\frac{\beta \hbar \omega }{2}-\ln \left(1-e^{-\beta \hbar \omega}\right)\right]\\ &=\frac{ 3\hbar \omega }{2}+\frac{ 3\hbar \omega e^{-\beta \hbar \omega}}{1-e^{-\beta \hbar \omega}}=\frac{3 \hbar \omega }{2}+\frac{ 3\hbar \omega }{e^{\beta \hbar \omega}-1} \end{align*}

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Recommended textbook solutions

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics 4th Edition by Randall D. Knight

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

4th EditionISBN: 9780133942651 (5 more)Randall D. Knight
3,508 solutions
Concepts in Thermal Physics 2nd Edition by Katherine M. Blundell, Stephen J. Blundell

Concepts in Thermal Physics

2nd EditionISBN: 9780198567707Katherine M. Blundell, Stephen J. Blundell
224 solutions
Mathematical Methods in the Physical Sciences 3rd Edition by Mary L. Boas

Mathematical Methods in the Physical Sciences

3rd EditionISBN: 9780471198260Mary L. Boas
3,355 solutions
Fundamentals of Physics 10th Edition by David Halliday, Jearl Walker, Robert Resnick

Fundamentals of Physics

10th EditionISBN: 9781118230718 (1 more)David Halliday, Jearl Walker, Robert Resnick
8,950 solutions

More related questions

1/4

1/7