Try the fastest way to create flashcards
Question

The following list of matrices and their respective characteristic polynomials is referred to in Exercise.

A=[2112]A=\left[\begin{array}{rr} 2 & -1 \\ -1 & 2 \end{array}\right]

, p(t)=(t3)(t1),p(t) = (t − 3)(t − 1),

B=[1113]B=\left[\begin{array}{cc} 1 & -1 \\ 1 & 3 \end{array}\right]

, p(t)=(t2)2p(t)=(t-2)^{2},

C=[6123201425]C=\left[\begin{array}{rrr} -6 & -1 & 2 \\ 3 & 2 & 0 \\ -14 & -2 & 5 \end{array}\right]

, p(t)=(t1)2(t+1)p(t)=-(t-1)^{2}(t+1),

D=[743833321613]D=\left[\begin{array}{rrr} -7 & 4 & -3 \\ 8 & -3 & 3 \\ 32 & -16 & 13 \end{array}\right]

, p(t)=(t1)3p(t)=-(t-1)^{3},

E=[6441461441641446]E=\left[\begin{array}{llll} 6 & 4 & 4 & 1 \\ 4 & 6 & 1 & 4 \\ 4 & 1 & 6 & 4 \\ 1 & 4 & 4 & 6 \end{array}\right]

, p(t)=(t+1)(t+5)2(t15),p(t) =(t + 1)(t + 5)^2(t − 15),,

F=[1111111111111111]F=\left[\begin{array}{rrr} 1 & -1 & -1 & -1 \\ -1 & 1 & -1 & -1 \\ -1 & -1 & 1 & -1 \\ -1 & -1 & -1 & 1 \end{array}\right]

, p(t)=(t+2)(t2)3p(t)=(t+2)(t-2)^{3}. Find a basis for the eigenspace EλE_{\lambda} for the given matrix and the value of λ\lambda. Determine the algebraic and geometric multiplicities of λ\lambda. E,λ=1E, \lambda=-1

Solution

Verified
Step 1
1 of 4

We have

E=[6441461441641446],p(t)=(t+1)(t+5)2(t15),λ=1\begin{align*} E&=\begin{bmatrix} 6&4&4&1\\ 4&6&1&4\\ 4&1&6&4\\ 1&4&4&6 \end{bmatrix}, p(t)=(t+1)(t+5)^{2}(t-15), \lambda=-1 \end{align*}

Find the eigenvectors. According to $\textbf{\color{#c34632}Formula (1)(1) Section 4.5 }$the eigenvectors corresponding to an eigenvalue λ\lambda of AA are the nonzero solutions of

(AλI)x=θ\begin{equation} (A-\lambda I)x=\theta \end{equation}

or

Ax=0.Ax=0.

For λ=1\lambda=-1 a non-trivial system is

[7441471441741447][x1x2x3x4]=[0000]\begin{equation} \begin{bmatrix} 7&4&4&1\\ 4&7&1&4\\ 4&1&7&4\\ 1&4&4&7 \end{bmatrix}\begin{bmatrix} x_{1}\\ x_{2}\\ x_{3}\\ x_{4} \end{bmatrix}=\begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \end{equation}

Using Gaussian elimination we solve the equation (2)(2). Reduce matrix to row echelon form

[7441471441741447]R247R1R2R347R1R3[74410337972470973372471447][74410337972470973372471447]R417R1R4R3+311R2R3[744103379724700481148110247247487][744103379724700481148110247247487]R4811R2R4R4R3R4[744103379724700481148110000]\begin{align*} \begin{bmatrix} 7&4&4&1\\ 4&7&1&4\\ 4&1&7&4\\ 1&4&4&7 \end{bmatrix}{\small\begin{matrix} R_{2}-\dfrac{4}{7}R_{1}\rightarrow R_{2}\\[7pt] R_{3}-\dfrac{4}{7}R_{1}\rightarrow R_{3} \end{matrix}}&\sim \begin{bmatrix} 7&4&4&1\\ 0&\dfrac{33}{7}&-\dfrac{9}{7}&\dfrac{24}{7}\\[7pt] 0&-\dfrac{9}{7}&\dfrac{33}{7}&\dfrac{24}{7}\\[7pt] 1&4&4&7 \end{bmatrix}\\ \begin{bmatrix} 7&4&4&1\\ 0&\dfrac{33}{7}&-\dfrac{9}{7}&\dfrac{24}{7}\\[7pt] 0&-\dfrac{9}{7}&\dfrac{33}{7}&\dfrac{24}{7}\\[7pt] 1&4&4&7 \end{bmatrix}{\small\begin{matrix} R_{4}-\dfrac{1}{7}R_{1}\rightarrow R_{4}\\ R_{3}+\dfrac{3}{11}R_{2}\rightarrow R_{3} \end{matrix}}&\sim \begin{bmatrix} 7&4&4&1\\ 0&\dfrac{33}{7}&-\dfrac{9}{7}&\dfrac{24}{7}\\[7pt] 0&0&\dfrac{48}{11}&\dfrac{48}{11}\\[7pt] 0&\dfrac{24}{7}&\dfrac{24}{7}&\dfrac{48}{7} \end{bmatrix}\\ \begin{bmatrix} 7&4&4&1\\ 0&\dfrac{33}{7}&-\dfrac{9}{7}&\dfrac{24}{7}\\[7pt] 0&0&\dfrac{48}{11}&\dfrac{48}{11}\\[7pt] 0&\dfrac{24}{7}&\dfrac{24}{7}&\dfrac{48}{7} \end{bmatrix}{\small\begin{matrix} R_{4}-\dfrac{8}{11}R_{2}\rightarrow R_{4}\\ R_{4}-R_{3}\rightarrow R_{4} \end{matrix}}&\sim \begin{bmatrix} 7&4&4&1\\ 0&\dfrac{33}{7}&-\dfrac{9}{7}&\dfrac{24}{7}\\[7pt] 0&0&\dfrac{48}{11}&\dfrac{48}{11}\\[7pt] 0&0&0&0 \end{bmatrix} \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Introduction to Linear Algebra 5th Edition by Jimmy T Arnold, Lee W. Johnson, R Dean Riess

Introduction to Linear Algebra

5th EditionISBN: 9780201658590Jimmy T Arnold, Lee W. Johnson, R Dean Riess
1,931 solutions
Linear Algebra and Its Applications 5th Edition by David C. Lay, Judi J. McDonald, Steven R. Lay

Linear Algebra and Its Applications

5th EditionISBN: 9780321982384 (3 more)David C. Lay, Judi J. McDonald, Steven R. Lay
2,070 solutions
Elementary Linear Algebra 11th Edition by Howard Anton

Elementary Linear Algebra

11th EditionISBN: 9781118473504Howard Anton
2,932 solutions
Elementary Linear Algebra 12th Edition by Anton Kaul, Howard Anton

Elementary Linear Algebra

12th EditionISBN: 9781119406778Anton Kaul, Howard Anton
3,078 solutions

More related questions

1/4

1/7