Try the fastest way to create flashcards
Question

The gamma function Γ(n)\Gamma(n) is defined for all n>1n>-1 by

Γ(n+1)=0xnexdx.\Gamma(n+1)=\int_0^{\infty} x^n e^{-x} d x .

Find a recurrence relation connecting Γ(n+1)\Gamma(n+1) and Γ(n)\Gamma(n). (a) Deduce (i) the value of Γ(n+1)\Gamma(n+1) when nn is a non-negative integer, and (ii) the value of Γ(72)\Gamma\left(\frac{7}{2}\right), given that Γ(12)=π\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}. (b) Now, taking factorial mm for any mm to be defined by m!=Γ(m+1)m !=\Gamma(m+1), evaluate (32)!\left(-\frac{3}{2}\right) !

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 5

Given:Γ0xnendx\textbf{Given}:\Gamma \int _{0}^{\infty} x^{n}e^{-n} dx

=[xnex1]00nxn1ex1dx=[xex]0+nxn1exdx=(00)+nΓ(n)=nΓ(n)\begin{align*} &=\left[\dfrac{x^{n}e^{-x}}{-1} \right]_{0}^{\infty}- \int _{0}^{\infty} n\dfrac{x^{n-1}e^{-x}}{-1}dx\\\\ &=\left[-x e^{-x} \right]_{0}^{\infty}+n\int x^{n-1}e^{-x} dx\\\\ &=\left(0-0 \right)+n\Gamma \left(n\right)\\\\ &= \boxed{n\Gamma \left(n\right)}\\\\ \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics 4th Edition by Randall D. Knight

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

4th EditionISBN: 9780133942651 (8 more)Randall D. Knight
3,508 solutions
Mathematical Methods in the Physical Sciences 3rd Edition by Mary L. Boas

Mathematical Methods in the Physical Sciences

3rd EditionISBN: 9780471198260 (1 more)Mary L. Boas
3,355 solutions
Mathematical Methods for Physics and Engineering: A Comprehensive Guide 3rd Edition by K. F. Riley, M. P. Hobson, S. J. Bence

Mathematical Methods for Physics and Engineering: A Comprehensive Guide

3rd EditionISBN: 9780521679718K. F. Riley, M. P. Hobson, S. J. Bence
744 solutions
Fundamentals of Physics 10th Edition by David Halliday, Jearl Walker, Robert Resnick

Fundamentals of Physics

10th EditionISBN: 9781118230718 (3 more)David Halliday, Jearl Walker, Robert Resnick
8,971 solutions

More related questions

1/4

1/7