Try the fastest way to create flashcards

Related questions with answers

Question

 The joint probability density function of the random variables X,Y, and Z is \text{ The joint probability density function of the random variables } X, Y , \text{ and } Z \text{ is }

f(x,y,z)=4xyz29, for 0<x,y<1, 0<z<3,f(x,y,z)=\frac{4xyz^2}{9}, \text{ for } 0<x,y<1, \text{ } 0<z<3,

f(x,y,z)=0, elsewhere.f(x,y,z)=0, \text{ elsewhere.}

 Find \text{ Find }

(a) the joint marginal density function of Y and Z;(a) \text{ the joint marginal density function of } Y \text{ and } Z;

(b) the marginal density of Y;(b) \text{ the marginal density of } Y ;

(c)P(14<X<12,Y>13,1<Z<2);(c) P( \frac{1}{4} < X < \frac{1}{2}, Y > \frac{1}{3} , 1 < Z < 2);

(d)P(0<X<12Y=14,Z=2).(d) P(0 < X < \frac{1}{2} | Y = \frac{1}{4}, Z = 2).

Solution

Verified
Step 1
1 of 5

(a)\textbf{(a)} We use the following formula for the joint marginal distribution of the variables YY and ZZ:

g(y,z)=xf(x,y,z)dx=014xyz29dx=(2x2yz29)01=2yz21292yz2029=2yz29\begin{align*} g(y,z) &= \int_x f(x,y,z) dx \\ &= \int_0^1 \frac{4xyz^2}{9} dx \\ &= \biggr( \frac{2x^2yz^2}{9} \biggr) \biggr |_0^1 \\ &= \frac{2yz^2 \cdot 1^2}{9} - \frac{2yz^2 \cdot 0^2}{9} \\ &= \boxed{ \frac{2yz^2}{9} } \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Probability and Statistics for Engineers and Scientists 9th Edition by Keying E. Ye, Raymond H. Myers, Ronald E. Walpole, Sharon L. Myers

Probability and Statistics for Engineers and Scientists

9th EditionISBN: 9780321629111 (4 more)Keying E. Ye, Raymond H. Myers, Ronald E. Walpole, Sharon L. Myers
1,204 solutions
Applied Statistics and Probability for Engineers 5th Edition by Douglas C. Montgomery, George C. Runger

Applied Statistics and Probability for Engineers

5th EditionISBN: 9780470053041Douglas C. Montgomery, George C. Runger
1,705 solutions
Probability and Statistics for Engineers and Scientists 4th Edition by Anthony J. Hayter

Probability and Statistics for Engineers and Scientists

4th EditionISBN: 9781111827045 (2 more)Anthony J. Hayter
1,341 solutions
Applied Statistics and Probability for Engineers 6th Edition by Douglas C. Montgomery, George C. Runger

Applied Statistics and Probability for Engineers

6th EditionISBN: 9781118539712 (1 more)Douglas C. Montgomery, George C. Runger
2,027 solutions

More related questions

1/4

1/7