## Related questions with answers

The mass of a radioactive isotope at time t (in years) is $M(t)=200 e^{-0.14 t} \mathrm{g}$. What is the mass of the isotope initially? How fast is the mass of the isotope changing 2 years later?

Solution

VerifiedTo find the initial mass of the isotope we will compute $M(0)$.

$\pmb{M(0)}=200\cdot e^{-0.14\cdot 0}=\pmb{200}$

We conclude that the initial mass of the isotope is $200\mathrm{\,\,g}$.

To find how fast the mass of the isotope is changing after $2$ years we will compute $M^\prime(2)$.

$\begin{align*} M^\prime(t)&=(200\cdot e^{-0.14t})^\prime\\ &=200\cdot e^{-0.14t}\cdot (-0.14t)^\prime\\ &=-200\cdot 0.14\cdot e^{-0.14t}\\ &=28\cdot e^{-0.14t} \end{align*}$

Substituting $t=2$ in $M^\prime(t)$ we get

$\boxed{M^\prime(2)=-21.16}$

We conclude that the mass of the isotope is changing approximately $-21\mathrm{\,\, g}$ per year.

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

10th Edition•ISBN: 9781285464640 (4 more)Tan, Soo#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (6 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

- abstract algebra

1/4

- abstract algebra

1/7