Try the fastest way to create flashcards
Question

The parametric curve x = 2 cos (-t), y = 2 sin (-t),0 ≤ t ≤ 2π is traced clockwise. Justify your answer.

Solution

Verified
Step 1
1 of 2

We list a few coordinates for (x,y)(x,y) in the given interval:

t(x,y)0(2,0)π4(2,2)π2(0,2)\def\arraystretch{1.5} \begin{array}{cc} \boldsymbol{t} & \boldsymbol{(x,y)}\\\hline 0 & (2, 0)\\ \frac\pi4 & \left(\sqrt2, -\sqrt2\,\right)\\ \frac\pi2 & \left(0, -2\right) \end{array}

From the coordinates we see that the curve is traced clockwise. The statement is \textcolor[RGB]{120,0,0}{true}.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Calculus: Graphical, Numerical, Algebraic, AP Edition 5th Edition by Bert K Waits, Daniel Kennedy, David M. Bressoud, Franklin Demana, Ross L. Finney

Calculus: Graphical, Numerical, Algebraic, AP Edition

5th EditionISBN: 9780133311617Bert K Waits, Daniel Kennedy, David M. Bressoud, Franklin Demana, Ross L. Finney
6,240 solutions
Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (5 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7