## Related questions with answers

The transistor in the circuit has parameters $K_p=$ $0.5 \mathrm{~mA} / \mathrm{V}^2, V_{T P}=-2 \mathrm{~V}$, and $\lambda=0$. (a) Determine $R_o$. (b) What is the expression for the circuit time constant? (c) Determine $C_C$ such that the lower $3 \mathrm{~dB}$ frequency is $20 \mathrm{~Hz}$.

Solution

Verified## Given:

Transistor circuit diagram with the following circuit parameters:

Gate Resistance: $R_{G} = 50 \ \text{k} \Omega$

Source Resistance: $R_{S} = 12 \ \text{k} \Omega$

Load Resistance: $R_{L} = 10 \ \text{k} \Omega$

Transistor Parameter: $K_p = 0.5\ \text{mA/V}^2$

Threshold Voltage: $V_{TP} = -2 \ \text{V}$

Channel Length Modulation: $\lambda = 0$

Corner Frequency: $f_L = 20 \ \text{Hz}$

## Required:

The small signal resistance $r_0$, the time constant $\tau$, and the value of the capacitance $C_C$.

## Strategy:

Evaluate the time constant based on the circuit parameters to determine the unknown capacitance.

## Create an account to view solutions

## Create an account to view solutions

## More related questions

1/4

1/7