Try the fastest way to create flashcards
Question

Three children are riding on the edge of a merry-go-round that is 100 kg, has a 1.60-m radius, and is spinning at 20.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the child who has a mass of 28.0 kg moves to the center of the merry-go-round, what is the new angular velocity in rpm?

Solution

Verified
Step 1
1 of 3

From conservation of angular momentum \textbf{conservation of angular momentum } we know that :  the angular momentum of a system of particles around a point in a fixed inertial reference frame is conserved if there is no net torque around this point \textbf{ the angular momentum of a system of particles around a point in a fixed inertial reference frame is conserved if there is no net torque around this point }.

τ=dLdt=0\sum \tau = \dfrac{d L }{dt} =0

Or :

L=l1+l2+l3+.............+lN=constant\overrightarrow L = \overrightarrow l_{1} + \overrightarrow l_{2} + \overrightarrow l_{3} + .............+ \overrightarrow l_{N} = \text{constant}

Li=LfIiωi=Ifωf\begin{gather*} L_{i} = L_{f} \\ \sum I_{i} \omega_{i} = \sum I_{f} \omega_{f} \\ \end{gather*}

From the moment of inertia of the merry - go round \textbf{the moment of inertia of the merry - go round } we know that :

I=12mr2I =\frac{1}{2} mr^2

From the moment of inertia of the boy \textbf{the moment of inertia of the boy } we know that :

mr2m r^2

So,

Ii=(12mm+m1+m2+m3)r2,If=(12mm+m1+m3)r2I_{i} =(\frac{1}{2} m_{m} + m_{1} +m_{2} + m_{3} ) r^2 \quad , \quad I_{f} =( \frac{1}{2} m_{m} + m_{1}+ m_{3} ) r^2

And from the kinematics of the rotational motion \textbf{the kinematics of the rotational motion } we know that :

v=rωv = r \omega

From the kinematics of rotational motion \textbf{the kinematics of rotational motion } we know that :

[20 revmin2πradrad60 s=2.094rad/s]\left [ \frac{ 20 \ \text{rev}}{ \text{min}} \cdot \frac{ 2 \pi}{ \text{rad}} \cdot \frac{ \text{rad}}{ 60\ \text{s}} = 2.094 \mathrm{rad/s} \right ]

Lf=Li(12mm+m1+m3)r2ωf=(12mm+m1+m2+m3)r2ωiωf=(12mm+m1+m2+m3)r2ωi(12mm+m1+m3)r2\begin{gather*} L_{f} = L_{i} \\ ( \frac{1}{2} m_{m} + m_{1}+ m_{3} ) r^2 \omega_{f} = (\frac{1}{2} m_{m} + m_{1} +m_{2} + m_{3} ) r^2 \omega_{i} \\ \omega_{f} = \dfrac{(\frac{1}{2} m_{m} + m_{1} +m_{2} + m_{3} ) r^2 \omega_{i} }{ ( \frac{1}{2} m_{m} + m_{1}+ m_{3} ) r^2 }\\ \end{gather*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics 4th Edition by Randall D. Knight

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

4th EditionISBN: 9780133942651 (8 more)Randall D. Knight
3,508 solutions
Mathematical Methods in the Physical Sciences 3rd Edition by Mary L. Boas

Mathematical Methods in the Physical Sciences

3rd EditionISBN: 9780471198260 (1 more)Mary L. Boas
3,355 solutions
Fundamentals of Physics 10th Edition by David Halliday, Jearl Walker, Robert Resnick

Fundamentals of Physics

10th EditionISBN: 9781118230718 (3 more)David Halliday, Jearl Walker, Robert Resnick
8,971 solutions
University Physics, Volume 1 1st Edition by Jeff Sanny, Samuel J Ling, William Moebbs

University Physics, Volume 1

1st EditionISBN: 9781938168277Jeff Sanny, Samuel J Ling, William Moebbs
1,471 solutions

More related questions

1/4

1/7