## Related questions with answers

Three moles of an argon gas are at a temperature of 275 K. Calculate the root-mean-square (rms) speed of an atom in the gas.

Solution

VerifiedWe have to find the value of root-mean-square speed of an atom in the gas.

$\textbf{Given values:}$

$T=275 \: \text{K}$

$R=8.314 \: \text{J}/\text{mol} \cdot \text{K}$

$M=39.95 \: \text{g} \rightarrow 0.03995 \: \text{kg}$

As we know, the root-mean-square speed of the molecules of a gas is given by:

$\begin{align*} v_{rms}&=\sqrt{\frac{3 k_B T}{m}}=\sqrt{\frac{3RT}{M}}\tag{Equation 1.}\\ \end{align*}$

Now, we have to substitute values in equation 1 and solve for $v_{rms}$:

$\begin{align*} v_{rms}&=\sqrt{\frac{3RT}{M}}\tag{Equation 1.}\\ v_{rms}&=\sqrt{\frac{3(8.314 \: \text{J}/\text{mol} \cdot \text{K})(275 \: \text{K})}{ 0.03995 \: \text{kg}}} \tag{Put values in equation.}\\ v_{rms}&=414.35596 \: \text{m}/\text{s}\\ \end{align*}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

4th Edition•ISBN: 9780133942651 (8 more)Randall D. Knight#### Mathematical Methods in the Physical Sciences

3rd Edition•ISBN: 9780471198260 (1 more)Mary L. Boas#### Fundamentals of Physics

10th Edition•ISBN: 9781118230718 (3 more)David Halliday, Jearl Walker, Robert Resnick## More related questions

- college algebra

1/4

- college algebra

1/7