Question

ABCFDE\triangle A B C \sim \triangle F D E. What is DE?

Given that the length of AC=12\overline{AC}=12, BC=8\overline{BC}=8, EF=18\overline{EF}=18, and DF=6\overline{DF}=6

Solution

Verified
Step 1
1 of 2

By definition, similar figures have corresponding sides that are proportional and corresponding angles that are congruent.

Given that ABCFDE\triangle ABC\sim\triangle FDE, then:

ABFD=BCDE=ACFE\dfrac{AB}{FD}=\dfrac{BC}{DE}=\dfrac{AC}{FE}

Using the second and third ratios,

BCDE=ACFE\dfrac{BC}{DE}=\dfrac{AC}{FE}

8DE=1218\dfrac{8}{DE}=\dfrac{12}{18}

8DE=23\dfrac{8}{DE}=\dfrac{2}{3}

832=DE8\cdot\dfrac{3}{2}=DE

12=DE12=DE

DE=12\color{#c34632}DE=12

Create an account to view solutions

Create an account to view solutions

More related questions

1/4

1/7