## Related questions with answers

Tris(hydroxymethyl)aminomethane, commonly called TRIS or Trizma, is often used as a buffer in biochemical studies. Its buffering range is from pH 7 to $9 ,$ and $K _ { b }$ is $1.19 \times 10 ^ { - 6 }$ for the reaction

$\left( \mathrm { HOCH } _ { 2 } \right) _ { 3 } \mathrm { CNH } _ { 2 } ( a q ) + \mathrm { H } _ { 2 } \mathrm { O } ( l ) \rightleftharpoons \left( \mathrm { HOCH } _ { 2 } \right) _ { 3 } \mathrm { CNH } _ { 3 } + ( a q ) + \mathrm { OH } ^ { - } ( a q )\\ {\begin{array} {l}{\text{TRIS} \quad \quad \quad \quad \quad \quad \quad \quad \text{TRISH}^+} \end{array}}$

What is the optimum pH for TRIS buffers?

Solution

VerifiedWe have a buffer solution that consist of TRIS and TRISH$^+$.

$\mathrm{ TRIS(aq) + H_2O(l) \rightleftharpoons TRISH^+(aq) + OH^-(aq) }$

$\bullet$ $\mathrm{K_b}$ value of TRIS is $1.19 \cdot 10^{-6}$

Therefore, $\mathrm{K_a}$ value is

$\mathrm{ K_a = \frac { K_w } { K_b } = \frac { 1.00 \cdot 10^{-14} } { 1.19 \cdot 10^{-6} } = 8.40 \cdot 10^{-9} }$

#### (a)

The optimum pH for TRIS buffers is the one where [TRIS] = [TRISH$^+$].

Let us calculate the pH using Henderson-Hasselbalch equation

$\begin{align*} \mathrm{ pH } &= \mathrm{ pK_a + log\left( \frac { [TRIS] } { [TRISH^+] } \right) }\\ &= \mathrm{ -log(K_a) + log(1) }\\ &= \mathrm{ -log(8.40 \cdot 10^{-9}) }\\ &= 8.08\\ &\approx {\color{#4257b2}8.1} \end{align*}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Chemistry: The Molecular Nature of Matter and Change

7th Edition•ISBN: 9780073511177 (2 more)Patricia Amateis, Silberberg#### Chemistry

9th Edition•ISBN: 9781133611097 (22 more)Steven S. Zumdahl, Susan A. Zumdahl#### Chemistry

10th Edition•ISBN: 9781305957404 (3 more)Donald J. DeCoste, Steven S. Zumdahl, Susan A. Zumdahl#### Chemistry, AP Edition

10th Edition•ISBN: 9781305957732 (1 more)Donald J. DeCoste, Steven S. Zumdahl, Susan A. Zumdahl## More related questions

- differential equations

1/4

- differential equations

1/7