## Related questions with answers

Two dice are thrown. Let E be the event that the sum of the dice is odd, let F be the event that the first die lands on 1, and let G be the event that the sum is 5. Describe the events $EF, E \cup F, FG, EF^c , EFG.$

Solution

VerifiedEvent E consists of:

$\\\left\{ \left( 1,2\right), \left(1,4 \right),\left( 1,6\right) , \left(3,2 \right), \left( 3,4\right), \left( 3,6\right), \left( 5,2\right), \left(5,4 \right), \left( 5,6\right),\right.$

$\\ \left. \left(2,1\right), \left(4,1 \right),\left( 6,1\right) , \left(2,3 \right), \left( 4,3\right), \left( 6,3\right), \left( 2,5\right), \left(4,5 \right), \left( 6,5\right) \right\} \\$

Event F consists of:
$\\\left\{ (1,1), (1,2), (1,3),(1,4), (1,5), (1,6) \right\} \\$Event G consists of:$
\left{(1,4),(4,1),(2,3),(3,2) \right} Then\

EF = \left{ (1,2),(1,4),(1,6)\right}
E\cup F = \left{ (1,1)\left( 1,2\right), (1,3) \left(1,4 \right), (1,5)\left( 1,6\right) ,\right.\left. \left(3,2 \right), \left( 3,4\right), \left( 3,6\right), \left( 5,2\right), \left(5,4 \right), \left( 5,6\right)
,\right.\left.
\left(2,1\right), \left(4,1 \right),\left( 6,1\right) , \left(2,3 \right), \left( 4,3\right), \left( 6,3\right), \left( 2,5\right), \left(4,5 \right), \left( 6,5\right) \right}
FG = \left{(1,4) \right}
EF^{c} = \left{ \left(3,2 \right), \left( 3,4\right), \left( 3,6\right), \left( 5,2\right), \left(5,4 \right), \left( 5,6\right),\right.\left.
\left(2,1\right), \left(4,1 \right),\left( 6,1\right) , \left(2,3 \right), \left( 4,3\right), \left( 6,3\right), \left( 2,5\right), \left(4,5 \right), \left( 6,5\right) \right}
EFG = \left{(1,4) \right} $

## Create an account to view solutions

## Create an account to view solutions

## Recommended textbook solutions

#### Introduction to Probability and Statistics for Engineers and Scientists

5th Edition•ISBN: 9780123948113 (1 more)Sheldon Ross#### Probability and Statistics for Engineers and Scientists

9th Edition•ISBN: 9780321629111 (6 more)Keying E. Ye, Raymond H. Myers, Ronald E. Walpole, Sharon L. Myers#### Probability and Statistics for Engineers and Scientists

4th Edition•ISBN: 9781111827045 (1 more)Anthony J. Hayter#### Applied Statistics and Probability for Engineers

6th Edition•ISBN: 9781118539712 (4 more)Douglas C. Montgomery, George C. Runger## More related questions

- statistics

1/4

- statistics

1/7