## Related questions with answers

U.S. airlines average about 4.5 fatalities per month. (Statistical Abstract of the United States: 2012). Assume that the probability distribution for x, the number of fatalities per month, can be approximated by a Poisson probability distribution. a. What is the probability that no fatalities will occur during any given month? b. What is the probability that one fatality will occur during any given month? c. Find E(x) and the standard deviation of x.

Solution

VerifiedGiven:

$\lambda=\mu=\text{Average}=4.5$

(a) Formula $\textbf{Poisson probability}$:

$P(x=k)=\dfrac{\lambda^k e^{-\lambda}}{k!}$

Evaluate the formula of Poisson probability at $k=0$:

$\begin{align*} P(x=0)&=\dfrac{4.5^0 e^{-4.5}}{0!}=e^{-4.5}\approx 0.0111=1.11\% \end{align*}$

$\text{\color{white} jmlirjtet mjretm lijretm lrejtj erjtl jrljtlr jlktjrl jtrlj ljr litelrj tlretm ermthmre hmtlrel thmrleht hlirht lhr}$

## Create an account to view solutions

## Create an account to view solutions

## Recommended textbook solutions

#### Probability and Statistics for Engineers and Scientists

9th Edition•ISBN: 9780321629111 (9 more)Keying E. Ye, Raymond H. Myers, Ronald E. Walpole, Sharon L. Myers#### The Practice of Statistics for the AP Exam

5th Edition•ISBN: 9781464108730Daniel S. Yates, Daren S. Starnes, David Moore, Josh Tabor#### Statistics and Probability with Applications

3rd Edition•ISBN: 9781464122163Daren S. Starnes, Josh Tabor## More related questions

1/4

1/7