## Related questions with answers

Question

Use an area argument to show that $\ln 2<1$.

Solution

VerifiedAnswered 2 years ago

Answered 2 years ago

Consider the interval $[1,2]$ then for all $t\in[1,2]$ we have $1\leq t$ which implies $\dfrac{1}{t}\leq 1\quad \forall t\in[1,2]$.

Then using Sub dominance rule we get

$\begin{aligned}\int_{1}^{2}\dfrac{1}{t}\:dt&< \int_{1}^{2}1\:dt\\ \implies \ln{2}&< t|_{1}^{2}\\ \ln{2}&< (2-1)\\ \ln{2}&< 1\end{aligned}$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986Christopher E Heil, Joel R. Hass, Maurice D. Weir10,144 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (2 more)James Stewart11,085 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (2 more)Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions

#### Calculus

6th Edition•ISBN: 9781465208880 (1 more)Karl J. Smith, Magdalena D. Toda, Monty J. Strauss5,412 solutions

## More related questions

- linear algebra
- computer science

1/4

- linear algebra
- computer science

1/7