Try the fastest way to create flashcards
Question

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

x2/3+y2/3=4,(33,1)(astroid)x^{2 / 3}+y^{2 / 3}=4, \quad(-3 \sqrt{3}, 1) \quad (\text{astroid})

Solution

Verified
Answered 7 months ago
Answered 7 months ago
Step 1
1 of 3

x23+y23=4x^{\frac{2}{3}}+y^{\frac{2}{3}}=4

Find a derivative on both sides of equation with respect to xx. .

ddx(x23+y23)=ddx(4)Use The Sum Rule.ddx(x23)+ddx(y23)=ddx(4)Recall that (c)=0,cRddx(x23)+ddx(y23)=0Use The Power Rule.23x231+ddx(y23)=023x13+ddx(y23)=0Use The Chain Rule.23x13+ddy(y23)dydx=023x13+23y13dydx=0Divide both sides by 23x13+y13dydx=0Express dydx.dydx=x13y13Simplify.dydx=(xy)13Subsitute x=33y=1dydx=(331)13dydx=1333Simplify.dydx=13\begin{align*} \frac{d}{dx}\left(x^{\frac{2}{3}}+y^{\frac{2}{3}}\right)&=\frac{d}{dx}\left(4\right) &&\text{Use The Sum Rule.}\\ \frac{d}{dx}\left(x^{\frac{2}{3}}\right)+\frac{d}{dx}\left(y^{\frac{2}{3}}\right)&=\frac{d}{dx}\left(4\right) &&\text{Recall that $\left(c\right)'=0, c\in R$}\\ \frac{d}{dx}\left(x^{\frac{2}{3}}\right)+\frac{d}{dx}\left(y^{\frac{2}{3}}\right)&=0 &&\text{Use The Power Rule.}\\ \frac{2}{3}x^{\frac{2}{3}-1}+\frac{d}{dx}\left(y^{\frac{2}{3}}\right)&=0\\ \frac{2}{3}x^{-\frac{1}{3}}+\frac{d}{dx}\left(y^{\frac{2}{3}}\right)&=0 &&\text{Use The Chain Rule.}\\ \frac{2}{3}x^{-\frac{1}{3}}+\frac{d}{dy}\left(y^{\frac{2}{3}}\right)\frac{dy}{dx}&=0\\ \frac{2}{3}x^{-\frac{1}{3}}+\frac{2}{3}y^{-\frac{1}{3}}\cdot \frac{dy}{dx}&=0 &&\text{Divide both sides by $\frac{2}{3}$}\\ x^{-\frac{1}{3}}+y^{-\frac{1}{3}}\cdot \frac{dy}{dx}&=0 &&\text{Express $\frac{dy}{dx}$.}\\ \frac{dy}{dx}&=-\frac{x^{-\frac{1}{3}}}{y^{-\frac{1}{3}}} &&\text{Simplify.}\\ \frac{dy}{dx}&=-\left(\frac{x}{y}\right)^{-\frac{1}{3}} &&\text{Subsitute $x=-3\sqrt{3}$, $y=1$}\\ \frac{dy}{dx}&=-\left(\frac{-3\sqrt{3}}{1}\right)^{-\frac{1}{3}}\\ \frac{dy}{dx}&=-\frac{1}{\sqrt[3]{-3\sqrt{3}}} &&\text{Simplify.}\\ \frac{dy}{dx}&=\frac{1}{\sqrt{3}} \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Concepts and Contexts 4th Edition by James Stewart

Calculus: Concepts and Contexts

4th EditionISBN: 9780495557425James Stewart
8,252 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550James Stewart
11,083 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7