Try the fastest way to create flashcards
Question

Use integration by parts to find the integrals. 033x3exdx\int_{0}^{3} \frac{3-x}{3 e^{x}} d x

Solution

Verified
Step 1
1 of 2

As indicated in the problem, we will solve this using integration by parts.

033x3exdx=1303(3x)exdxIntegration by partsu=3xdv=exdxdu=dxv=exFactor out the constant 13.=13((3x)ex)031303exdxYou can evaluate uv part here.=1331303exdx=113(ex)03exdx=ex+C=113(1e3+1)=1+13e313=23+13e30.6833\begin{align*} \int_0 ^3 \frac{3-x}{3e^x}\,dx &= \frac{1}{3}\underbrace{\int_0 ^3 (3-x)e^{-x}\,dx}_{\boxed{\begin{smallmatrix} \text{Integration by parts}\\ u=3-x\quad dv = e^{-x}\,dx\\ du = -\,dx\quad v = -e^{-x} \end{smallmatrix}}} && \text{Factor out the constant }\frac{1}{3}. \\ &=\frac{1}{3}\left(-(3-x)e^{-x}\right)\bigg|_0 ^3 -\frac{1}{3}\int_0 ^3 e^{-x}\,dx && \text{You can evaluate }uv \text{ part here.}\\ &=\frac{1}{3}\cdot 3 - \frac{1}{3}\int_0 ^3 e^{-x}\,dx \\ &=1-\frac{1}{3}\left( -e^{-x}\right)\bigg|_0 ^3 && \int e^{-x}\,dx = -e^{-x}+C\\ &=1-\frac{1}{3}\left(-\frac{1}{e^3}+1\right) \\ &=1+\frac{1}{3e^3}-\frac{1}{3} \\ &=\boxed{\color{#4257b2}\frac{2}{3}+\frac{1}{3e^3}} \\ &\approx \boxed{\color{#4257b2}0.6833} \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Finite Mathematics and Calculus with Applications 10th Edition by Margaret L. Lial, Nathan P. Ritchey, Raymond N. Greenwell

Finite Mathematics and Calculus with Applications

10th EditionISBN: 9780321979407 (2 more)Margaret L. Lial, Nathan P. Ritchey, Raymond N. Greenwell
7,669 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (4 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions

More related questions

1/4

1/7