Question

# Use l’Hospital’s rule to find $\lim _{x \rightarrow \infty}\left(1+\frac{c}{x}\right)^{x}$ where c is a constant.

Solution

Verified
Step 1
1 of 4

$\text{\underline {The L'Hospital's Rule}}$ is used when evaluating the limit that by substituting the limit value of a variable, goes to a form $\frac {0} {0}$ or $\frac {\infty } {\infty }$ (or some other, that can be reduced to these two). It says that if

$\lim\limits_{x \to a} \frac {f'(x) } {g'(x) } =L$

then

$\lim\limits_{x \to a} \frac {f(x)} {g(x) } =L$

To apply it, we differentiate the functions in the numerator and in the denominator and compute the limit $\lim\limits_{x \to a} \frac {f'(x) } {g'(x) }$. If it exists and equals to $L$, we conclude

$\lim\limits_{x \to a} \frac {f(x)} {g(x) } =L$

## Recommended textbook solutions #### Biology

1st EditionISBN: 9780132013499 (1 more)Kenneth R. Miller, Levine
2,470 solutions #### Calculus for Biology and Medicine

4th EditionISBN: 9780134070049 (2 more)Claudia Neuhauser, Marcus Roper
4,089 solutions #### Nelson Science Perspectives 10

1st EditionISBN: 9780176355289Christy C. Hayhoe, Doug Hayhoe, Jeff Major, Maurice DiGiuseppe
1,359 solutions #### Miller and Levine Biology

1st EditionISBN: 9780328925124 (3 more)Joseph S. Levine, Kenneth R. Miller
1,773 solutions