Try the fastest way to create flashcards
Question

Use long division to divide.

(x45x3+6x2x2)÷(x+2)(x^4-5x^3+6x^2-x-2)\div(x+2)

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 3

We use long division to divide the expressions.

x+2;             x3+3x21x+2)   x4+5x3+6x2x2x3;x42x3x3;4x        3x3+6x2x3;4x3  +3x36x2x3+;4x3               +x2x3;4x3                     +x+2x3+;4x3                         +0\begin{array}{l} \phantom{x+2;}{~~~~~~~~~~~~~x^3+3x^2-1}\\ x+2\overline{\smash{)}~~~x^4+5x^3+6x^2-x-2}\\ \phantom{x-3;}\underline{-x^4-2x^3}\\ \phantom{{x-3;}4x}~~~~~~~~3x^3+6x^2\\ \phantom{{x-3;}4x^3~~+}\underline{3x^3-6x^2}\\ \phantom{{x-3+;}4x^3~~~~~~~~~~~~~~~+}{-x-2}\\ \phantom{{x-3;}4x^3~~~~~~~~~~~~~~~~~~~~~+}\underline{x+2}\\ \phantom{{x-3+;}4x^3~~~~~~~~~~~~~~~~~~~~~~~~~+}{0}\\ \end{array}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus I with Precalculus 3rd Edition by Bruce E. Edwards, Ron Larson

Calculus I with Precalculus

3rd EditionISBN: 9780840068330Bruce E. Edwards, Ron Larson
12,640 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550James Stewart
11,083 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7