Question

Use scientific notation, the Laws of Exponents, and a calculator to perform the indicated operations. State your answer correct to the number of significant digits indicated by the given data.

(3.542×106)9(5.05×104)12\frac{\left(3.542 \times 10^{-6}\right)^9}{\left(5.05 \times 10^4\right)^{12}}

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 3

We will solve the given number, using the law of exponents and mathematical operations:

(ab)x=axbx(1)axay=axy or ayx(2)\begin{aligned} (ab)^x&=a^xb^x&&(1)\\ \frac{a^x}{a^y}&=a^{x-y}~\text{or}~a^{y-x}&&(2) \end{aligned}

Let's apply law 11:

(3.542×106)9(5.05×104)12=(3.542)9×1069(5.05)12×10412=(3.542)9×1054(5.05)12×1048=87,747.95658×1054275,103,767.1×1048=8.774795658×104×10542.751037671×108×1048=8.774795658×10502.751037671×1056\begin{aligned} \frac{(3.542\times 10^{-6})^9}{(5.05\times 10^4)^{12}}&=\frac{(3.542)^9\times 10^{-6\cdot 9}}{(5.05)^{12}\times 10^{4\cdot 12}}\\ &=\frac{(3.542)^9\times10^{-54}}{(5.05)^{12}\times 10^{48}}\\ &=\frac{87,747.95658\times 10^{-54}}{275,103,767.1\times 10^{48}}\\ &=\frac{8.774795658\times 10^4\times 10^{-54}}{2.751037671\times 10^8\times10^{48}}\\ &=\frac{8.774795658\times 10^{-50}}{2.751037671\times10^{56}}\\ \end{aligned}

Create an account to view solutions

Create an account to view solutions

More related questions

1/4

1/7