Try the fastest way to create flashcards
Question

Use series to evaluate the following limit.

limx0sinxx/x3lim x→0 sin x-x/x^3

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 2

sinx=n=0(1)nx2n+1(2n+1)!=xx33!+x55!x77!+\begin{align*} \sin x = \sum_{n=0}^{\infty} (-1)^n \dfrac{x^{2n+1}}{(2n+1)!} = x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + \dotsb \end{align*}

Substitute the series for sinx\sin x and simplify

limx0sinxxx3=limx0(xx33!+x55!x77!+)xx3=limx0x33!+x55!x77!+x3=limx0(13!+x25!x47!+)=13!+00+=16\begin{align*} \lim\limits_{x \to 0} \dfrac{\sin x - x}{x^3} &= \lim\limits_{x \to 0} \dfrac{ \left( x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + \dotsb \right) - x}{x^3}\\ \\ &= \lim\limits_{x \to 0} \dfrac{ - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + \dotsb }{x^3}\\ \\ &= \lim\limits_{x \to 0} \left( - \dfrac{1}{3!} + \dfrac{x^2}{5!} - \dfrac{x^4}{7!} + \dotsb \right)\\ \\ &= - \dfrac{1}{3!} + 0 - 0 + \dotsb\\ \\ &= -\dfrac{1}{6} \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 10th Edition by Howard Anton, Irl C. Bivens, Stephen Davis

Calculus: Early Transcendentals

10th EditionISBN: 9780470647691Howard Anton, Irl C. Bivens, Stephen Davis
10,488 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (5 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (4 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,048 solutions

More related questions

1/4

1/7