## Related questions with answers

Use series to evaluate the following limit.

$lim x→0 sin x-x/x^3$

Solution

Verified$\begin{align*} \sin x = \sum_{n=0}^{\infty} (-1)^n \dfrac{x^{2n+1}}{(2n+1)!} = x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + \dotsb \end{align*}$

Substitute the series for $\sin x$ and simplify

$\begin{align*} \lim\limits_{x \to 0} \dfrac{\sin x - x}{x^3} &= \lim\limits_{x \to 0} \dfrac{ \left( x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + \dotsb \right) - x}{x^3}\\ \\ &= \lim\limits_{x \to 0} \dfrac{ - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + \dotsb }{x^3}\\ \\ &= \lim\limits_{x \to 0} \left( - \dfrac{1}{3!} + \dfrac{x^2}{5!} - \dfrac{x^4}{7!} + \dotsb \right)\\ \\ &= - \dfrac{1}{3!} + 0 - 0 + \dotsb\\ \\ &= -\dfrac{1}{6} \end{align*}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Calculus: Early Transcendentals

10th Edition•ISBN: 9780470647691Howard Anton, Irl C. Bivens, Stephen Davis#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (5 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (4 more)Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

1/4

1/7