## Related questions with answers

Use the alternative form of the derivative to find the derivative at x=c (if it exists).f(x) = 3/x, c=4

Solution

VerifiedTo solve this question, we use the alternative form of the derivative.

$\begin{align*} f'(x)=\lim_{x\rightarrow c}{\dfrac{f(x)-f(c)}{x-c}} \end{align*}$

Using this we have

$\begin{align*} f'(4)&=\lim_{x\rightarrow 4}{\dfrac{f(x)-f(4)}{x-4}}\\\\ &=\lim_{x\rightarrow 4}{\dfrac{\dfrac{3}{x}-\dfrac{3}{4}}{\dfrac{x-4}{1}}}\tag{1} \end{align*}$

Because fractions in numerator have different denominators the first step is to find equivalent fractions which have common denominator. We find the Least Common Denominator (LCD) by multiplying denominators: $4x$ then rewrite fractions in the equation as equivalent fractions using the LCD as denominator. Then add and simplify.

$\begin{align*} (1)&=\lim_{x\rightarrow 4}{\dfrac{\dfrac{4\cdot3-3x}{4x}}{\dfrac{x-4}{1}}} \\\\ &=\lim_{x\rightarrow 4}{\dfrac{\dfrac{-3(x-4)}{4x}}{\dfrac{x-4}{1}}}\tag{Factor out -3.}\\\\ &=\lim_{x\rightarrow 4}{\dfrac{-3\cancel{(x-4)}}{4x\cancel{(x-4)}}}\tag{Simplify complex fraction.}\\\\ &=\lim_{x\rightarrow 4}{\dfrac{-3}{4x}}\\\\ &=\dfrac{-3}{4\cdot 4}\\\\ &={\color{Mahogany}\dfrac{-3}{16}} \end{align*}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (5 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

1/4

1/7