## Related questions with answers

Question

Use the formula below to calculate the arc length of the polar curve.

Formula:

$L=\int_\alpha^\beta\sqrt{[f(\theta)]^2+[f'(\theta)]^2}d\theta=\int_\alpha^\beta\sqrt{r^2+\left(\frac{dr}{d\theta}\right)^2}d\theta$

The entire cardioid r = a(1 − cos theta)

Solution

VerifiedAnswered 1 year ago

Answered 1 year ago

Step 1

1 of 6The arc length is:

$L=\int\limits_\alpha^\beta\sqrt{r^2+\left (\dfrac{dr}{d\theta}\right )^2}d\theta$

where the parameter $\theta$ is defined on the interval $[\alpha,\beta]$.

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

10th Edition•ISBN: 9780470647691Howard Anton, Irl C. Bivens, Stephen Davis10,488 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (2 more)James Stewart11,084 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson11,049 solutions

## More related questions

1/4

1/7