## Related questions with answers

Question

Use the Integral Test to determine the convergence or divergence of the p-series. $\sum_{n=1}^{\infty} \frac{1}{n^{0.9}}$

Solution

VerifiedStep 1

1 of 2The function $f(x)=\dfrac{1}{x^{0.9}}$ is positive, continuous and decreasing for $x\geq 1$. Therefore, $f$ satisfies the conditions for the Integral Test.

$\begin{align*} \int_1^\infty \dfrac{1}{x^{0.9}} \, dx &= \int_1^\infty x^{-0.9}\, dx \\ &= \lim\limits_{b \to \infty} \int_1^b x^{-0.9}\, dx \\ &= \lim\limits_{b \to \infty} \left[ 10x^{0.1} \right]_1^b \\ &= \lim\limits_{b \to \infty} \left[ 10b^{0.1} - 10(1)^{0.1}\right] \\ &=\infty \end{align*}$

So, the series diverges.

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (2 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,143 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (1 more)James Stewart11,083 solutions

#### Calculus AP Edition

11th Edition•ISBN: 9781337286886 (1 more)Bruce H. Edwards, Ron Larson12,441 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (2 more)Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions

## More related questions

1/4

1/7