Try the fastest way to create flashcards
Question

Use the Integral Test to determine whether each series converges or diverges. k=11k2+1\sum_{k=1}^{\infty} \frac{1}{k^{2}+1}

Solution

Verified
Step 1
1 of 3

Integral Test

Let ff be a continuous, positive, decreasing function on [k,)[k, \infty), and let an=f(n)a_n = f(n). Then the following is true:

kf(x) dx is convergent    n=kan is convergent\int_k^{\infty} f(x) \ dx \text{ is convergent} \quad \iff \quad \sum_{n = k}^{\infty} a_n \text{ is convergent}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (4 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions
Calculus for the AP Course 2nd Edition by Kathleen Miranda, Michael Sullivan

Calculus for the AP Course

2nd EditionISBN: 9781464142260 (2 more)Kathleen Miranda, Michael Sullivan
7,556 solutions

More related questions

1/4

1/7