Try the fastest way to create flashcards
Question

Use the reduced coefficient matrix to write a general solution in terms of one or more column matrices. Also determine the dimension of the solution space and a basis for this space.

4x13x2+x4+x53x6=02x2+4x4x56x6=03x12x2+4x5x6=02x1+x23x3+4x4=0\begin{aligned} 4 x_{1}-3 x_{2}+x_{4}+x_{5}-3 x_{6} &=0 \\ 2 x_{2}+4 x_{4}-x_{5}-6 x_{6} &=0 \\ 3 x_{1}-2 x_{2}+4 x_{5}-x_{6} &=0 \\ 2 x_{1}+x_{2}-3 x_{3}+4 x_{4} &=0 \end{aligned}

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 2

The coefficient matrix is

A=[430113020416320041213400]We find the reduced matrixAR=[100022315[5pt]0100491015[5pt]00101110115[5pt]0001271085]\begin{align*} A&=\mqty[4 & -3 & 0 & 1 & 1 & -3 \\ 0 & 2 & 0 & 4 & -1 & -6 \\ 3 & -2 & 0 & 0 & 4 & -1 \\ 2 & 1 & -3 & 4 & 0 & 0 ]\\ \text{We find the reduced matrix}\\ A_R&=\mqty[1 & 0 & 0 & 0 & \frac{22}{3} & -\frac{1}{5} \\[5pt] 0 & 1 & 0 & 0 & \frac{49}{10} & \frac{1}{5} \\[5pt] 0 & 0 & 1 & 0 & \frac{11}{10} & -\frac{11}{5}\\[5pt] 0 & 0 & 0 & 1 & -\frac{27}{10} & -\frac{8}{5} ]\\ \end{align*}

rank(A)=4rank(A)=4 \Rightarrow general solution will have mrank(A)=64=2m-rank(A)=6-4=2 arbitrary constants.

Let x5=αx_5=\alpha and x6=βx_6=\beta to write the general solution.

X=α(223[5pt]4910[5pt]1110[5pt]2710[5pt]1[5pt]0)+β(15[5pt]15[5pt]115[5pt]85[5pt]0[5pt]1)\begin{equation*} X=\alpha \mqty(-\frac{22}{3} \\[5pt] -\frac{49}{10} \\[5pt] -\frac{11}{10} \\[5pt] \frac{27}{10} \\[5pt] 1 \\[5pt] 0) + \beta \mqty(\frac{1}{5} \\[5pt] -\frac{1}{5} \\[5pt] \frac{11}{5} \\[5pt] \frac{8}{5} \\[5pt] 0 \\[5pt] 1) \end{equation*}

The dimension of the solution space is 64=26-4=2.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (5 more)Erwin Kreyszig
4,134 solutions
Advanced Engineering Mathematics 7th Edition by Peter V. O'Neil

Advanced Engineering Mathematics

7th EditionISBN: 9781111427412 (4 more)Peter V. O'Neil
1,608 solutions
Advanced Engineering Mathematics 6th Edition by Dennis G. Zill

Advanced Engineering Mathematics

6th EditionISBN: 9781284105902 (2 more)Dennis G. Zill
5,294 solutions
Advanced Engineering Mathematics 7th Edition by Dennis G. Zill

Advanced Engineering Mathematics

7th EditionISBN: 9781284206241Dennis G. Zill
5,289 solutions

More related questions

1/4

1/7