## Related questions with answers

Question

Use the test of your choice to determine whether the following series converge.

$\sum _ { k = 1 } ^ { \infty } \left( \frac { 1 } { k } + 2 ^ { - k } \right)$

Solution

VerifiedAnswered 12 months ago

Answered 12 months ago

Step 1

1 of 2Let $a_k=\dfrac {1} {k}, \ b_k=2^{-k}.$

Then,

$\sum a_k$

diverges (Harmonic series) and

$\sum b_k$

converges (Geometric series, $r=1/2$).

By Theorem 10.8, Property (4)

$\quad \Rightarrow \quad \sum (a_k+b_k) \quad \text { diverges }$

So,

$\sum_{k=1}^{\infty} \left( \frac {1} {k} +2^{-k}\right) \quad \text { diverges}$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

3rd Edition•ISBN: 9780134763644 (5 more)Bernard Gillett, Eric Schulz, Lyle Cochran, William L. Briggs13,437 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (6 more)James Stewart11,085 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions

## More related questions

1/4

1/7