## Related questions with answers

Verify the moments of inertia for the solid of uniform density. Use a graphing utility to evaluate the triple integrals.

$\begin{aligned} & I_x=\frac{1}{12} m\left(3 a^2+L^2\right) \\ & I_y=\frac{1}{2} m a^2 \\ & I_z=\frac{1}{12} m\left(3 a^2+L^2\right) \end{aligned}$

Solution

VerifiedFirst we will set up the integral for the mass of the solid. It is assumed that the solid has uniform mass density, i.e., $\rho=1$.

From the picture we can see that the limits for integration are the following:

$-a\leq x \leq a$

$-\frac{L}{2}\leq y\leq \frac{L}{2}$

$x^2+z^2=a\Rightarrow z=\pm \sqrt{a^2-x^2}$

$-\sqrt{a^2-x^2}\leq z\leq \sqrt{a^2-x^2}$

Now:

$\begin{align*} m&=\int \kern -5pt \int \kern -5pt \int _{Q} \rho(x,y,z) \ dV=\int_{-a}^{a} \kern -3pt \int_{-L/2}^{L/2} \kern -3pt \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} dz\ dy\ dx \end{align*}$

Using computer algebra system to evaluate the triple integral above we obtain:

$\color{#4257b2}m=L\pi a^2$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (1 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (2 more)Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

1/4

1/7