Try the fastest way to create flashcards

Verify the moments of inertia for the solid of uniform density. Use a graphing utility to evaluate the triple integrals.

Ix=112m(3a2+L2)Iy=12ma2Iz=112m(3a2+L2)\begin{aligned} & I_x=\frac{1}{12} m\left(3 a^2+L^2\right) \\ & I_y=\frac{1}{2} m a^2 \\ & I_z=\frac{1}{12} m\left(3 a^2+L^2\right) \end{aligned}


Answered 9 months ago
Answered 9 months ago
Step 1
1 of 3

First we will set up the integral for the mass of the solid. It is assumed that the solid has uniform mass density, i.e., ρ=1\rho=1.

From the picture we can see that the limits for integration are the following:

axa-a\leq x \leq a

L2yL2-\frac{L}{2}\leq y\leq \frac{L}{2}

x2+z2=az=±a2x2x^2+z^2=a\Rightarrow z=\pm \sqrt{a^2-x^2}

a2x2za2x2-\sqrt{a^2-x^2}\leq z\leq \sqrt{a^2-x^2}


m=Qρ(x,y,z) dV=aaL/2L/2a2x2a2x2dz dy dx\begin{align*} m&=\int \kern -5pt \int \kern -5pt \int _{Q} \rho(x,y,z) \ dV=\int_{-a}^{a} \kern -3pt \int_{-L/2}^{L/2} \kern -3pt \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} dz\ dy\ dx \end{align*}

Using computer algebra system to evaluate the triple integral above we obtain:

m=Lπa2\color{#4257b2}m=L\pi a^2

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus 10th Edition by Bruce H. Edwards, Ron Larson


10th EditionISBN: 9781285057095 (9 more)Bruce H. Edwards, Ron Larson
12,387 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (1 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (2 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions

More related questions