Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

# Will help you prepare for the material covered in the first section of the next chapter. Solve each equation by using rhe cross-products principle to clear fractions from the proportion:$\text { If } \frac { a } { b } = \frac { c } { d } , \text { then } a d = b c . ( b \neq 0 \text { and } d \neq 0 )$Round to the nearest tenth. Solve for$B , 0 < B < 180 ^ { \circ } : \frac { 81 } { \sin 43 ^ { \circ } } = \frac { 62 } { \sin B }$

Solution

Verified
Step 1
1 of 3

Solve given equation using the cross-products principle to clear fraction from the proportion. It should be like this:

If $\dfrac{a}{b} = \dfrac{c}{d}$, then $ad = bc$.

## Recommended textbook solutions #### Precalculus

6th EditionISBN: 9780134469140 (3 more)Robert F. Blitzer
12,394 solutions #### Precalculus

5th EditionISBN: 9780321837349 (1 more)Robert F. Blitzer
12,040 solutions #### Precalculus

7th EditionISBN: 9780618643448 (18 more)Larson, Robert P. Hostetler
11,581 solutions #### Precalculus: Mathematics for Calculus

5th EditionISBN: 9781439049488 (3 more)Lothar Redlin, Stewart, Watson
6,913 solutions