## Related questions with answers

Write and evaluate the definite integral that represents the area of the surface generated by revolving the curve on the indicated interval about the x-axis. $y=\frac{x^{3}}{18}$, $3 \leq x \leq 6$

Solution

VerifiedTo solve we will use the surface of a revolution formula

$S=2 \pi \int_{a}^{b} r(x) \sqrt{1+ [f'(x)]^2}\,dx$

We will use $r(x)=\frac{x^3}{18}$ because it is the distance from the $x$ axis, the radius. When we differentiate $f(x)=\frac{x^3}{18}$ we obtain $f'(x)=\frac{x^2}{6}$.

$\begin{align*} S &= 2\pi \int \frac{x^3}{18} \sqrt{1+\frac{x^4}{36}}\,dx \quad \quad \text{let } u=1+\frac{x^4}{36}\\ &= 2 \pi \int \frac{x^3}{18} \sqrt{u} \frac{9}{x^3}\,du\\ &= \pi \int \sqrt{u}\,du\\ &= \frac{2 \pi}{3} u^\frac{3}{2}\\ &= \frac{2 \pi}{3} \left(1+\frac{x^4}{36} \right)^\frac{3}{2} \end{align*}$

Now we can plug in the limits of integration

$\begin{align*} S &= \frac{2 \pi}{3} \left[\left(1+\frac{x^4}{36} \right)^\frac{3}{2} \right]_{3}^{6}\\ &= \frac{2 \pi}{3} \left(37^\frac{3}{2} - \left(\frac{13}{4} \right)^\frac{3}{2} \right)\\ & \approx 459.068 \end{align*}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (6 more)James Stewart#### Calculus AP Edition

11th Edition•ISBN: 9781337286886 (1 more)Bruce H. Edwards, Ron Larson#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

1/4

1/7