Try the fastest way to create flashcards
Question

Write u\mathbf{u} as the sum of a vector parallel to v\mathbf{v} and a vector orthogonal to v\mathbf{v}.

u=3j+4k,v=i+j\mathbf{u}=3 \mathbf{j}+4 \mathbf{k}, \quad \mathbf{v}=\mathbf{i}+\mathbf{j}

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 3

Remember that a vector u\mathbf{u} can be expressed as the sum of the vector parallel to v\mathbf{v} and the vector orthogonal to v\mathbf{v} by the following expression:

u=projvu+(uprojvu)(1)\mathbf{u}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}+\left(\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}\right) \tag{1}

Where projvu\operatorname{proj}_{\mathbf{v}} \mathbf{u} is the projection of u\mathbf{u} parallel to v\mathbf{v} and is given by:

projvu=(uvv2)v(2)\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}\tag{2}

and (uprojvu)\left(\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}\right) is orthogonal to v\mathbf{v}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Thomas' Calculus: Early Transcendentals 11th Edition by George B Thomas Jr, Joel D. Hass, Maurice D. Weir

Thomas' Calculus: Early Transcendentals

11th EditionISBN: 9780321198006 (4 more)George B Thomas Jr, Joel D. Hass, Maurice D. Weir
10,574 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7