## Related questions with answers

Write the equation in standard form. State whether the graph of the equation is a parabola, circle, ellipse, or hyperbola. Then graph the equation.

$9 y^2+18 y=25 x^2+216$

Solution

VerifiedRewrite the given into standard form.

$\begin{aligned} 9y^2+18y=25x^2+216 \end{aligned}$

Arrange and use APE

$\begin{aligned} \left[9y^2+18y\right]-25x^2=216 \end{aligned}$

Factor out $9$

$\begin{aligned} 9\left[y^2+2y\right]-25x^2=216 \end{aligned}$

Complete the square

$\begin{aligned} 9\left[y^2+2y+\left(\frac{b}{2}\right)^2\right]-25x^2=216+9\left(\frac{b}{2}\right)^2 \end{aligned}$

Substitute

$\begin{aligned} 9\left[y^2+2y+\left(\frac{2}{2}\right)^2\right]-25x^2=216+9\left(\frac{2}{2}\right)^2 \end{aligned}$

Simplify

$\begin{aligned} 9\left[y^2+2y+(1)^2\right]-25x^2&=216+9(1)^2\\ 9(y^2+2y+1)-25x^2&=225 \end{aligned}$

Factor

$\begin{aligned} 9(y+1)^2-25x^2=225 \end{aligned}$

Equate to $1$

$\begin{aligned} \frac{9(y+1)^2}{225}-\frac{25x^2}{225}&=\frac{225}{225}\\ \frac{(y+1)^2}{25}-\frac{x^2}{9}&=1 \end{aligned}$

Hence, the standard form is $\dfrac{(y+1)^2}{25}-\dfrac{x^2}{9}=1$ and indicates that the graph is Hyperbola.

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Algebra 2, California Edition

1st Edition•ISBN: 9780078659805Beatrice Moore Harris, Carter, Casey, Cuevas, Day, Hayek, Holliday, Marks#### Big Ideas Math Algebra 2: A Common Core Curriculum

1st Edition•ISBN: 9781608408405Boswell, Larson#### Big Ideas Math: Algebra 2 A Common Core Curriculum

1st Edition•ISBN: 9781642088052Laurie Boswell, Ron Larson## More related questions

1/4

1/7