## Related questions with answers

Write the given expression as an algebraic expression in x.

$\sin \left( 2 \tan ^ { -1 } x \right)$

Solution

VerifiedLet $\tan^{-1} x= \theta$ then we obtain

$x= \tan \theta$

Therefore

$\sin ( 2 \tan^{-1} x) = \sin (2 \theta)$

According to the double angle formula

$\color{#c34632}{\sin 2x= 2 \sin x \cos x}$

we obtain

$\sin ( 2 \tan^{-1} x) = 2 \sin \theta \cos \theta$

Since $\tan \theta=x$, we obtain

$\begin{align*} \sin \theta &= \frac {x}{\sqrt {1+x^2}}\\ \cos \theta &= \frac {1}{\sqrt {1+x^2}} \end{align*}$

By substituting $\sin \theta$ and $\cos \theta$ we obtain

$\begin{align*} \sin ( 2 \tan^{-1} x) &= 2 \frac {x}{\sqrt {1+x^2}} \cdot \frac {1}{\sqrt {1+x^2}}\\ &= \frac {2x}{1+x^2} \end{align*}$

The solution is

$\sin ( 2 \tan^{-1} x) = \frac {2x}{1+x^2}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### College Algebra and Trigonometry

1st Edition•ISBN: 9780078035623Donna Gerken, Julie Miller#### College Algebra

12th Edition•ISBN: 9780134217451Callie Daniels, David I. Schneider, John Hornsby, Margaret L. Lial#### Algebra and Trigonometry

4th Edition•ISBN: 9781305071742 (3 more)Lothar Redlin, Stewart, Watson#### College Algebra and Trigonometry

7th Edition•ISBN: 9781439048603Richard D. Nation, Richard N. Aufmann, Vernon C. Barker## More related questions

1/4

1/7