Question

Write the given system in the matrix form x' = Ax + f.

x(t)=3x(t)y(t)+t2x'(t)=3x(t)-y(t)+t^2

y(t)=x(t)+2y(t)+ety'(t)=-x(t)+2y(t)+e^t

Solution

Verified
Step 1
1 of 2

Considering the vector function

x(t)=[x(t)y(t)],\mathbf{x}(t)=\left[\begin{array}{cc} x(t) \\ y(t) \end{array}\right],

the matrix function

A(t)=[3112]\mathbf{A}(t)=\left[\begin{array}{rr} 3 & -1\\ -1 & 2\end{array}\right]

and the vector function

f(t)=[t2et]\textbf{f}(t)=\left[\begin{array}{cc} t^2 \\ e^t \end{array}\right]

we can rewrite the system in the form x(t)=A(t)x(t)+f(t)\mathbf{x}'(t)=\mathbf{A}(t)\mathbf{x}(t)+\mathbf{f}(t) as below:

[x(t)y(t)]=[3112][x(t)y(t)]+[t2et]\left[\begin{array}{cc} x'(t) \\ y'(t) \end{array}\right]=\left[\begin{array}{rr} 3 & -1\\ -1 & 2\end{array}\right]\left[\begin{array}{cc} x(t) \\ y(t) \end{array}\right]+\left[\begin{array}{cc} t^2 \\ e^t \end{array}\right]

Create an account to view solutions

Create an account to view solutions

More related questions

1/4

1/7