Exercise 1

Chapter 3, Section 3-1, Page 105
enVision Geometry 1st Edition by Al Cuoco
ISBN: 9780328931583

Solution

Verified
Step 1
1 of 2

A rigid motion\textbf{rigid motion} is a transformation that preserves length and angle measure.

So, to check if the given transformations are a rigid motions, let' s measure length sides and angles of the preimage and image.

(By measuring, you can use a protractor and straightedge.)\textit{(By measuring, you can use a protractor and straightedge.)}

a.\boxed{\text{\textbf{a.}}}

If you measured well, you should get that the corresponding side lengths and angle measures are the same\textbf{the corresponding side lengths and angle measures are the same}.

In another words, they are preserved.

Therefore, a transformation will be a rigid motion.\textbf{transformation will be a rigid motion.}

Create a free account to view solutions for this book

Create a free account to view solutions for this book